
1. Introduction

Corpus-based research has been one of the new driving forces not only

in the area of natural language processing (NLP) but also in many linguistic

fields. Many linguists look into text or speech corpora to find sentences or

utterances relevant to their research. They use speech samples from the

corpora to observe patterns, to build linguistic hypotheses and to test them.

Engineers involved in the NLP business heavily depend on the corpora.

They use the corpora to optimize and evaluate their systems.

Use of corpora is essential in some research areas because most corpora

contain numerous textual or spoken sentences being used in real life. For

example, the Penn Treebank (Marcus et al. 1993) text corpus contains 2,499

Unified Praat Script Tools for Facilitating
Korean ToBI Annotation1)

Kyuchul Yoon

(English Division, Kyungnam University)

Key Words: Praat, script, Korean, ToBI, K-ToBI, annotation

인문논총 제56집(2006), pp. 000~000

Unified Praat Script Tools for Facilitating Korean ToBI Annotation

1) This work was supported by Kyungnam University Foundation Grant, 2006.

stories from the Wall Street Journal which were syntactically annotated.

Since these news articles were not intended for linguists in general, they

contain real life expressions and useful collocations that can be exploited

by computational linguists. The British National Corpus (British National

Corpus 1991) contains a 100 million word collection of samples of written

and spoken English. The Buckeye Speech Corpus (Pitt et al. 2005) contains

speech recordings from 40 speakers in Ohio conversing freely with an

interviewer.

One of the reasons that the text or speech corpora are useful is that they

were annotated with information, which can be in the form of orthographic

transcriptions, phonetic labeling, part-of-speech tags, and/or syntactic

parsing. As more researchers examine linguistic phenomena with increasing

attention to the prosodic hierarchy of a language, it is expected that there is

an increased need for corpora which include prosodic annotation. For

example, there has been growing interests in the behavior of segments in

the prosodic hierarchy of Korean. In one study (Cho & Keating 2001),

Korean stops were the main focus and they were examined in utterances

annotated with the Korean ToBI prosodic transcription convention (Jun

2000). However, the study looked at the stop segments in utterances

recorded only for that particular experiment. This is not to say that the

experiment was flawed. Rather, the findings could be reconfirmed and

supported with more follow-up studies performed with a large-scale K-ToBI

annotated speech corpus.

Prosodically annotated corpora can also be used in speech synthesis. The

importance of prosody, specifically of the fundamental frequency contour,

segmental durations, phrasing information, etc. cannot be emphasized too

much in the speech synthesis industry. In order to build an accurate

phrasing model, for example, one can use a large-scale speech corpus

2 인문논총 제56집 (2006)

annotated with some kind of prosodic transcription convention. One study

(Yoon 2006) built a 400-sentence speech corpus of Korean language sample

annotated with K-ToBI and used it to build a model of phrasing that can be

used in a text-to-speech synthesis system. If prosody has relevance in the

linguistic patterning of segments and suprasegmentals, the importance of

prosodically annotated speech corpora in modeling a language becomes

self-evident.

Building an annotated corpus is a time-consuming process. It usually

takes months, or even years of hard work. However, compared with the

entire body of annotated corpora which has been compiled in the past, the

number of corpora that are freely available is comparatively limited.

Moreover, the tools used to build the corpora are rarely made public.

Therefore, if one wishes to create a corpus similar to one which has already

been built by someone else, many times one has to “reinvent the wheel”.

This is partly because such tools have usually been custom-built for a

particular project or company. The Korean ToBI prosodic transcription

convention is a very useful framework because, whichever software one

may use, there is an established set of instructions that a labeler has to

follow in order to annotate an utterance (Jun 2000). As long as the software

allows one to develop tools that can be used in the corpus-building

process, the annotated corpus will contain the same information as any

other corpus using this system.

The challenge, then, is to develop such tools. Proprietary software such

as PitchWorks(R) (Scicon R&D 2005) has limited capability in terms of

allowing users to develop corpus-building tools. The data files are not plain

texts, and can only be viewed within the software. The software only

supports Windows and Mac operating systems and is therefore closed to the

Linux/Unix community. All of these “closedness”, tool development and

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 3

platform compatibility problems disappear with open-source programs such

as Praat (Boersma 2005) and WaveSurfer (Center for Speech Technology

2005). For example, Praat has a built-in scripting language that allows users

to write scripts to meet their own individual needs. These script tools can

be used to automate repetitive tasks in building corpora. All of the data files

produced by the program are plain text files that can be viewed and edited

with any text editor. The program supports Windows and Mac as well as

Linux/Unix operating systems. Data files created in a Linux or Unix

environment can be then opened in a Windows working environment, and

vice versa. The source codes used to create Praat are open and can be

edited if one otherwise has the capability and the need to do so. Open-

source projects are becoming of interest to more and more people because,

unlike propriety software which may disappear along with the company

that has created it, the project does not depend on merely a few select

people, but rather, relies upon an entire widespread community of people

who are willing to devote their time and energy to such projects. In brief,

open-source programs can similarly be said to offer all of the benefits of an

open-source project.

For these reasons, more people are using open-source programs to

design and build corpora today than ever before. Communities of people

who use the open-source programs typically exchange ideas, scripts and

information in order to improve them. The Praat scripts which have been

introduced in this paper are the ones that were originally designed to build

the OSU Korean Talkbank speech corpus used in Yoon (2006). The original

Praat scripts were modified and extended to produce a unified set of scripts

that one can use to build a large-scale K-ToBI labeled speech corpus. The

Praat scripts are ‘unified’ in the sense that, once the text part of the corpus

is romanized with the help of a non-Praat script, the entire corpus-building

4 인문논총 제56집 (2006)

process can be completed with the scripts introduced below. This process

includes steps ranging from tokenizing texts and speech into sentence-sized

chunks to evaluating inter-labeler agreement. The scripts help labelers

speed their annotation either by automating some steps, e.g., tokenizing a

paragraph into punctuation-delimited sentences, or by eliminating repetitive

tasks, e.g. opening and closing files, creating default label files, or assigning

default tone labels to be corrected by the labelers. The author intends to

distribute these scripts under the open-source terms of GNU General Public

License (GPL) (Free Software Foundation Inc. 1991). Users of these scripts

can freely modify them to meet their needs in conducting research.

2. Praat scripts for Korean ToBI annotation

For the operational purpose of this work, the process of building a

speech corpus annotated with the K-ToBI convention was classified into

five steps. In addition to these five essential steps, some maintenance work

may also be further performed on a corpus, such as normalizing the

tokenized sound files or correcting errors made by labelers.

• Tokenize a text paragraph into component sentences delimited by

punctuation marks.

• Tokenize a paragraph-long sound recording into matching utterances.2)

• Create an annotation file (.TextGrid), align by word and assign default

labels.

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 5

2) The unit of tokenization can be larger than a sentence, e.g. a paragraph, in which

case a slight modification of the scripts for the next step would be necessary so

that appropriate default labels can be assigned.

• Labelers perform the actual K-ToBI annotation.

• Evaluate inter-labeler agreement.

The current version of Praat cannot handle two-byte characters such as

Korean hangul. Thus, it was assumed that the textual part of the corpus had

been already romanized by some non-Praat script3) (see footnote 2). It was

also assumed that the romanized hangul would preserve the orthographic

syllabification information inherent in the hangul writing system. One way

to do it was to insert a hyphen between the end of one orthographic

syllable and the beginning of the following orthographic syllable. For

example, the name for the Korean writing system 한글, which has two

orthographic syllables, was romanized as han-gul, not as hangul. The

reason we chose to preserve the orthographic syllabification information in

the romanized hangul is that it would make things easier when default tone

labels were assigned during the third step. Depending on the number of

syllables present, the default phonetic tone labels for an Accentual Phrase

(AP) can vary from two to four units. For example, if the number of

syllables comprising an AP is four or more, it is highly likely that the phrase

will have the default tone labels of, e.g. L +H L+ Ha. The actual realization

of the surface tone pattern can be changed by the labeler, which is why the

preliminary tone labels are labeled ‘default’.

Inserting these ‘default’ tone labels automatically by the Praat script is

one way in which these script tools save time in building the speech

corpus. From the experience of building the OSU Talkbank, it was realized

6 인문논총 제56집 (2006)

3) The romanization code that we used was “han2phon.c” and it was originally

written by Nick Cipollone, an OSU Linguistics graduate currently working at

Microsoft Corporation, and later modified by Prof. Chris Brew at the OSU

Linguistics Department.

that it took a considerable amount of time to manually open a sound file,

create a TextGrid file and insert somewhat repetitive surface tone labels in

the phonetic tone tier. It was also noticed that it took much less time to

delete a tone label than to insert it, or to change the position of a tone

label, than to insert it. This gave us the idea of inserting ‘default’ tone or

boundary index labels into the TextGrid file. Then the labelers can simply

move the default labels around, or remove them if necessary. In a carefully

read speech style, an orthographically space-delimited word group, or

eojeol, tends to be realized as one AP. It therefore makes sense to insert a

‘default’ phonological tone label at the end of each eojeol. When two or

more eojeol combines to form a bigger AP, the labeler can merely delete

the intervening default tone label. A sentence usually ends with an

Intonational Phrase (IP), whose common boundary tone label is HL%. As a

result of this tendency, this tone can be assigned as a default tone at the

end of every sentence. The break indices associated with the usual AP and

IP are numbers 2 and 3. These values can also be assigned as the default

values to the break index tier of the TextGrid file. The strategy of using

‘default’ labels was justified with English ToBI labeling (Syrdal et al. 2001),

which found that automatic assigning of ‘default’ labels speeded manual

labeling, and it did not exhibit any significant bias effect on label

assignment.

Moreover, time can be saved in other steps as well. When building a

large-scale speech corpus, it is usually the case that the labelers provide

some kind of an orthographic transcription to each sentence. If there is

already a text version of the corpus, it is usually chunked or tokenized into

sentences. The spoken version is also tokenized into matching utterances.

Of course, this cannot always be the case. However, tokenizing the original

long sound file is recommended because it is much easier to handle small

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 7

sound files than large bulky files. When choosing to perform the tokenizing,

a Praat script can perform all of the repetitive tasks involved in the step.

Labelers need only to identify the start or end of each sentence. The script

will cut the identified segment and save it as a sentence-sized sound file on

the labeler’s computer hard drive. Furthermore, the script can be instructed

to insert a labeling tier, e.g. a “sentence” tier, in the TextGrid file, so that

the original sentence stays in one of the labeling tiers. As suggested above,

it is much easier to delete information than to retrieve deleted information.

Therefore, there is no harm done in adding more information to the

TextGrid file. After all, the K-ToBI convention encourages labelers to add

information if necessary.

One essential step necessary in building a large-scale corpus is to assess

the degree of agreement or consistency among the annotators involved in

the project. If there is not consistent agreement above a certain level, the

corpus cannot be reliably used by other researchers. One way to rate inter-

labeler agreement is to compare the transcriber-pair-word (Pitrelli et al.

1994). This is a comparison of the labels that two particular transcribers

assigned to one particular word or word boundary. It thus analyzes the

combinatorics of picking two transcribers out from among all of the

transcribers who participated in the project. If there were n number of

transcribers, then the combinatorics of picking two transcribers, ignoring

their order, would be nC2 = n∗ (n-1)/2. In other words, two transcribers are

compared at a time until all such possible transcriber pairs have been

exhausted. The resulting percent agreement rate will be based on this

number. If there were 10 transcribers, the 100% agreement would be

reached for a particular label if all 10∗ (10-1)/2 =45 transcriber-pairs assigned

the same label, i.e. 45/45∗ 100 = 100%. If one transcriber did not agree with

the rest, then the transcriber-pairs would be 9∗ (9-1)/2 = 36, and the

8 인문논총 제56집 (2006)

agreement would be 36/45∗ 100 = 80%. As Pitrelli et al. (1994) claims, this is

a more strict way of calculating inter-labeler agreement, because without

the notion of transcriber-pair-words, the 80% agreement rate would have

corresponded to a 90% agreement, because nine transcribers out of ten

agreed. When analyzing merely a couple of sentences picked out for

calculating inter-labeler agreement, manual calculation could also work. If,

however, dozens of sentences were involved, doing this manually would be

prone to introduce human errors. Therefore it is more desirable to use a

script for evaluating inter-labeler agreement.

The following subsections elaborate on what the Praat scripts do in each

of the five steps given above. The last subsection introduces two useful

scripts that can be used in the corpus-building process. The author assumes

that the reader has basic knowledge about Praat. The text versions of the

scripts are given in Appendix and their file versions are available on the

author’s website.

2.1. Tokenizing a text paragraph into sentences

The first thing to do after the romanization of the hangul text is to

tokenize a paragraph into component sentences delimited by sentence-final

punctuation marks. Note that the paragraph should not contain any line

breaks. In other words, the paragraph is a single long line containing many

component sentences. If there is more than one paragraph in the input text

file, the script will display an error message, in which case the user has to

make sure that the input file has only one paragraph. The tokenizing script

takes the paragraph as its input and puts out a column of component

sentences. Each row of the column is separated by a line break. The input

and its output of the script will look as follows after the execution.

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 9

<Input: Before execution>

Sentence 1. Sentence 2? Sentence 3! Sentence 4. Sentence 5?

<Output 1: After execution> <Output 2: After execution>

Sentence 1. Sentence 1

Sentence 2? Sentence 2

Sentence 3! Sentence 3

Sentence 4. Sentence 4

Sentence 5? Sentence 5

<Figure 1> shows the dialog box that pops up after the execution of the

tokenizing script. It asks the user to type in the name of the input text file.

Note that the file should be a plain text file that can be edited with any text

editor such as “Notepad” in the Windows environment. As the dialog box

shows, the output file containing a column of component sentences will

10 인문논총 제56집 (2006)

<Figure 1> Dialog box of the text

tokenizing script.

<Figure 2> Dialog box of the sound

tokenizing script.

have the same name as the input file except that it will be prefixed with

“sentenceList-”. For example, for the input file “news-002.txt”, the output file

name should be “sentenceList-news-002.txt”. The script will then produce

another output file without the sentence-final punctuation, this time with

the prefix “sentenceList2-”. Of course, this prefix can be changed in the

script by replacing it with whatever the user may desire. As the check boxes

indicate in the dialog box, the script uses at least three types of sentence-

final punctuation; a period, question mark or exclamation point. Users can

also provide an additional symbol in the blank, if desired. If there is a

symbol that the script has to use in the tokenization, this is the place to

specify it.

The script proceeds by reading the entire paragraph as one long line,

identifying the location of the punctuation marker that appears first, and

then cutting and storing in a string array variable whatever text occurs

previous to the first punctuation mark, including the punctuation mark

itself. It will then output the first component sentence into the output text

file. The script keeps repeating this process with whatever text remains

from the previous step. The commands that play a major role in the process

are the functions, index(), left(), and right(), and the while ~ endwhile

loop. The index() function deals with two string arguments. The first one

in this case would be the long string of component sentences and the

second one would be one of the punctuation marks. The function

obviously identifies the first occurrence of the punctuation mark. Once it is

known where the first sentence ends, the first component sentence can

then be extracted from the long line of sentences by using the left()

function, which also deals with two arguments; one is a string and the other

is the number of characters to be extracted from the left end of the string

argument. What remains from this step is stored in another string variable

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 11

by using the right() function, which will serve as the input for the next

round of the while loop.

2.2. Tokenizing a paragraph-long sound recording into matching

utterances

What the user needs to do in tokenizing the paragraph-long sound file

into sentence-sized utterances is to identify the start and end of each

sentence by click-dragging over each sentence in the editor window, and

pressing the “Continue” button of the small pop-up dialog box created by

the script command pause. The script will also display an information

window containing a column of all of the component sentences. The user

only needs to check each sentence in the information window, select the

corresponding utterance in the editor window, and push the “Continue”

button in another pop-up dialog box in order to continue to the next

sentence.

As <Figure 2> shows, the script takes as its input the two files, one for

the paragraph-long sound file and the other for the text file with tokenized

sentence. Note that the script is about to create an annotation file whose

first labeling tier will be named “sentences”. If the user does not like this

tier name, it can be changed to something like “tokenizedSentence”, etc.

The tokenized utterance files will be named after the paragraph-long sound

file, except that they will be sequentially numbered. For example, if the

long sound “s0201a.wav” contained dozens of utterances, the tokenized

ones will be named “s0201a-01.wav”, “s0201a-02.wav”, “s0201a-03.wav”, etc.

If the long sound file contained hundreds of utterances, the tokenized ones

should be named “s0201a-001.wav”, “s0201a-002.wav”, “s0201a-003.wav”,

etc. The number of digits, e.g. 2 for the former and 3 for the latter, can be

12 인문논총 제56집 (2006)

specified in the numOfDigits field. It can take 2 to 5 digits. The script can

thereby tokenize workloads ranging from merely dozens of utterances, i.e.

01 ~ 99, to hundreds of thousands of utterances, i.e. 00001 ~ 99999.

If the user were to stop after tokenizing 987 utterances and take the day

off, he or she could then resume the tokenizing process upon resuming

work at any time starting with the 988th utterance. This process of break

and resumption can be specified in the startingFileNum field. The position

of the cursor in the editor window can be restored by entering the location

in seconds in the startOfWindow field. The user does not have to memorize

the cursor position. It can be retrieved from the log file that was created in

the same directory as the script. The user can also specify the size of the

window to display with the windowLength field. With a bigger monitor, the

user can similarly specify a wider window length. If the user leaves the

outFolder and prefixChunked field blank, the output folder and the

tokenized utterance files will have the same name as the long sound file,

which is recommended in order to avoid any possible file name confusion.

With the tokenization in progress, the user will notice that the script

keeps adding sentences to the sentence tier of the TextGrid label file that is

displayed simultaneously with the long sound file (See <Figure 3>). If either

the last sentence is reached or the user has not selected anything, i.e.

signaling that the user has finished with the tokenizing or that the user

wants to take the day off, the script will display a small pop-up question

dialog box, and ask the user if she or he wants to do the actual cutting of

the labeled utterances, and save them into smaller sound files. At the same

time, the TextGrid files with only one tier containing each sentence will be

saved in the same output folder. The text or sound tokenizing process can

be repeated as many time as there are text files, each containing a

paragraph. If there were 30 text files, i.e. 30 paragraphs, then there would

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 13

be 30 subfolders after the tokenization. Each subfolder would contain

tokenized sound/TextGrid files which would be component sentences of

each paragraph.

2.3. Create an annotation file, align by word and assign default labels

Strictly speaking, the annotation file, i.e. the TextGrid file, was already

created in the immediate preceding step where the sound tokenizing script

chopped the paragraph-long sound files into sentence-sized sound files,

along with their matching TextGrid files. However, the current step can be

said to create the annotation file because this is where the K-ToBI labeling

tiers such as the phonological tone tier, phonetic tone tier, break index tier,

etc. are added to the existing TextGrid file. As the first blank field in

<Figure 4> show, the script asks for the name of the input folder where the

tokenized sounds and TextGrids are. In the next two fields, it asks for the

file extensions of the files because it will only work with those types of files

in the input folder. Then it asks for the suffix that will be used to create the

output folder where the aligned TextGrid files are to be stored. For

14 인문논총 제56집 (2006)

<Figure 3> The sound tokenizing script keeps adding sentences to the “sentences” tier.

example, if the input folder with the TextGrids is designated “s0201a”, then

the output folder will be named “s0201a-aligned” if the user accepts the

default suffix provided in the fourth blank field.

Note that the script does not modify the existing TextGrids and save them

in the same folder, but rather creates an additional folder that will house the

modified files. This is one of the design principles of the unified script set.

We observed this principle because we had learned from our own previous

experiences that it was generally preferable to “insert” than to “overwrite”

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 15

<Figure 4> Dialog box of the script for creating and aligning an annotation file, and

assigning default labels.

information. Once overwritten, old information, which could be of critical

help later on, could not be retrieved. Since the storage space has become

increasingly cheaper over the years, it is always a good idea to keep the

original data in a folder, while putting the newer version into a new folder.

The default symbol used to separate orthographic syllables in the

romanized data is the hyphen. This is given in the sylSep field. The next five

fields specify the names of the labeling tiers to be added to the existing

TextGrid files. Once the script is run, it automatically tokenizes the sentence

in the first labeling tier into its component space-delimited words, create an

additional “word” tier, and puts them into their own separate compartments

called intervals in the word tier. The factorOfDistance fields specifies how

much the tokenized words are crowded toward the right hand side of the

orthographic word tier before being manually aligned by a labeler. The

factor takes an integer value from 2 to 5: “2”designating the most density

bias toward the right, and “5”, the least right-handed density bias of the

tokenized words. The labeler must then move the boundaries of the word

intervals to their appropriate place according to the waveform and

spectrogram of the sound file. If the boundary to be moved were placed by

the script well before, i.e. to the left hand side of, the matching acoustic

landmark on the spectrogram, the labeler would first have to move all of

the boundaries to the right of the current boundary to make room for the

current boundary to be able to move to its appropriate position. This is very

inefficient and is a waste of time. Therefore a way is needed to “push” the

tokenized words toward the right hand side of the tier so that labelers can

retrieve one word at a time. Using the factorOfDistance is one way to

accomplish this “pushing” in the editor window.

The alignment of the tokenized words is the only thing that a labeler

would have to do manually. The script would perform all of the rest of the

16 인문논총 제56집 (2006)

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 17

<Figure 5> What the ‘default’ label assigning script does. It first tokenizes the sentence into

its component words (top panel). The labeler manually aligns the words (second from the

top). The script assigns ‘default’ labels after creating four additional labeling tiers (second

from the bottom). The labeler manually corrects the ‘default’ labels, completing the K-ToBI

labeling for the sentence (bottom panel). Model labeling from (Jun 2000).

remaining processes automatically, from adding four additional labeling

tiers to placing default boundaries in the tiers according to the K-ToBI

labeling convention (See <Figure 5>). Specifically, following the manual

alignment of the component words, the script will add AP boundaries with

the default LHa label at the end of each word, default phonetic tone tier

labels according to the identity of the first syllable onset and the number of

component syllables of each word, and the default break indices; 2 for an

AP and 3 for the end of the sentence. The identity of the first syllable onset

can be changed depending on the romanization scheme used in the hangul

romanization. This is done by selecting the right scheme in the

Romanization drop-down menu at the bottom of the dialog box. When all

of the default labels have been assigned, the script will pause, asking the

user to check the newly-created TextGrid, and to press “Continue” in order

to save it to the new output folder specified by the user. The same process

may then be repeated for the next file in the input folder.

2.4. Perform the annotation

In this step, the labeler does the most important job in building the

corpus, i.e. listening to the utterance and correcting the default labels which

have been assigned in the previous step. This is where keen judgment

about the actual tone/break index labels is required by the labelers. Since

most of the labels that a labeler would require in this step have already

been inserted by the previous script, the labeler needs only to delete

unnecessary labels, and, in some cases, to correct the wrong ones.

In this step, there are two types of scripts involved; one is a Praat script

(see <Figure 6>) and the other is a Praat manpage (see <Figure 7>). A Praat

manpage is a hyperlink-style document format used in the Praat manuals.

18 인문논총 제56집 (2006)

Hyperlinks (in blue) can take one to other manpages, or perform linked

Praat scripts. The hyperlinks used in this step are all Praat scripts that

perform actions to the TextGrid file in the editor window. These scripts

reside in a subfolder specified in the dialog box in <Figure 6>.

Once the script is run, it will also bring up a Praat manpage given in

<Figure 7> along with an editor window with the first sound/TextGrid pair

in the input folder. If the labeler wished to delete a particular boundary in

the phonological tone tier, he or she would have to select the boundary by

clicking on it, and then select the delete link provided under the “For

phonological tone tier” section. The labeler can replace an existing label

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 19

<Figure 6> Dialog box of the labeling

script.

<Figure 7> Praat manual page containing

script links (in blue).

with one of the labels provided in each of the section in the manpage. This

is done by selecting an existing label, and clicking on one of the labels in

the manpage. Of course, the labeler can manually delete, or correct any

existing labels in the editor window. Manual labeling instructions are given

at the bottom of the manpage.

In the phonetic tone tier, in addition to the usual editing procedures

explained above, the labeler can delete, insert, or move the surface tone

labels according to his, or her judgment. The labeler can do the same

editing in the break index tier. Finally, the miscellaneous tier, which is an

interval tier, requires special attention. Since it is not a point tier, it requires

two boundaries in order to create one compartment or interval. The labeler

can specify the beginning, and end of the interval by selecting an area over

the editor window. This is done by clicking on the beginning of the area,

and dragging the mouse to the end of the area. Click on the <laughter> link

on the manpage, and the interval in the miscellaneous tier will be created

for the labeler by the embedded script. When the actual labeling is done for

the TextGrid, the labeler can press “Continue” on the pop-up dialog box,

and the script will store the newly-created TextGrid file into a different

output folder whose name has the “-labeled” suffix after the input folder

name.

2.5. Evaluate inter-labeler agreement

As explained above, evaluating inter-labeler agreement is a very

important step in building any large-scale corpus, and we followed the strict

method proposed in Pitrelli et al. (1994). As the dialog box in <Figure 8>

shows, there should be a folder which has subfolders. Each subfolder

should contain TextGrids labeled by each labeler. Of course, the set of

20 인문논총 제56집 (2006)

TextGrids should be the same for all labelers. Once the script is run, it will

look for each file in the subfolders, compare each label points, count

transcriber-pair-words, and calculate the overall percent value of the degree

of agreement. The user needs only to designate the orthographic word tier,

and the phonological tone tier. As of the time of this publication, with

regard to the current version of the script, the degree of agreement in the

phonetic tone tier has not as yet been calculated.

For each TextGrid, the script will create a plain text file containing all of

the labels each of the labelers assigned for a particular word boundary,

along with their transcriber-pair-word counts, and agreement for that

TextGrid. If there were 12 subfolders or labelers used in the inter-labeler

agreement evaluation, there would be 12 plain text files with .agree file

extension in the current folder. Each text file will contain the same kind of

information except that the accumulated percent agreement will be given in

the last file. A sample text file is given below (TPW stands for transcriber-

pair-word).

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 21

<Figure 8> Dialog box of the script for evaluating inter-labeler agreement.

WORD Yeong-i-ga o-myeon na-neun gan-da

Labeler 1 NONE LHa LHa HL%

Labeler 2 NONE LHa LHa HL%

Labeler 3 NONE LHa LHa HL%

Labeler 4 NONE LHa LHa HL%

Labeler 5 NONE LHa LHa HL%

Labeler 6 NONE LHa LHa HL%

Labeler 7 NONE LHa LHa HL%

Labeler 8 NONE LHa LHa HL%

Labeler 9 NONE LHa LHa HL%

Labeler 10 NONE HL% LHa HL%

Labeler 11 NONE HL% LHa HL%

Labeler 12 NONE HL% LHa HL%

ActualTPW 66 39 66 66 234

ReferenceTPW 66 66 66 66 264

234 out of 264 88.6%

(39 TPW for “o-myeon” because 9 Lha’s and 3 HL%’s, i.e. 9*(9-1)/2 + 3*(3-1)/2

= 39)

2.6. Miscellaneous scripts

When it is necessary to normalize paragraph-long sound files, the

normalizing script (see <Figure 9>) can be used. It will scan input sound

files for maximum dB value and normalize them with respect to the value.

If the user has specified a particular dB value, it will use that value instead.

The script will also produce a text log file that contains information with

regard to the intensity values before, and after the normalization.

When a labeler accidentally moves a boundary that is not supposed to be

moved, or inserts a boundary into a place slightly out of sync with

22 인문논총 제56집 (2006)

boundaries in the other tiers, he or she can undo that action in the editor

window. However, if this mistake were not corrected all the way through

the final labeling step, it can be corrected by using the boundary-

synchronizing script. <Figure 10> shows the parameters the user can set.

Users can specify the reference tier that the script will use as the reference,

and the target tier that the script will synchronize. The referenceConstant

field at the bottom of the dialog box indicates the threshold of the

discrepancy between the boundaries across the two neighboring tiers. If the

constant were 0.1, the script would synchronize the boundaries if the inter-

boundary distance across the two tiers is less than 0.1 seconds. The

constant can therefore be determined on an empirical basis. Once the

constant is determined, the script will output the synchronized TextGrids in

the user-specified subfolder.

Kyuchul Yoon / Unified Praat Script Tools for

<Figure 9> Dialog box of the normalizing

script.

<Figure 10> Dialog box of the boundary-

synchronizing script.

3. Discussion

This paper introduced a set of Praat scripts to help speed K-ToBI

annotation. The process of building a large-scale speech corpus was

classified into five steps: tokenization of the text part of the corpus into

component sentences, tokenization of a paragraph-long sound file into

matching utterances, creation of TextGrid files followed by manual

alignment of the tokenized words and assignment of default tone and break

index labels, actual annotation by the labelers, and evaluation of inter-

labeler agreement. Praat scripts were designed to save time in each of these

steps either by making some of the processes automatic, or by eliminating

repetitive tasks. The script set can be said to be ‘unified’ in the sense that

once the hangul text is romanized, the entire corpus-building process can

be handled with the use of the scripts.

The scripts will be distributed under the terms of the GNU General Public

License (GPL) (Free Software Foundation Inc. 1991), in the hope that

researchers use and modify them to suit their needs, and will in turn

publish them in order to encourage and facilitate further research. It is also

hoped that more annotated corpora will be freely available to the academic

community. Increasing numbers of researchers are beginning to realize that

corpus study is important not only to computational linguists, but also to

theoretical linguists as well. Linguists who may not be particularly

interested in practical applications of the corpora can still look for linguistic

patterns which may be yet of interests to them in the corpora, and use them

for theoretical study. The quality of the materials which such theoretical

researchers may find in the corpora could be particularly useful in that such

materials were not recorded or collected for the sole purpose of the

24 인문논총 제56집 (2006)

researchers’ specific areas of theoretical study. The evidence linguists find in

the corpora could thereby make their claims stronger than those they find

in the materials obtained in recording facilities. The Buckeye Speech Corpus

(Pitt et al. 2005) is one such example. It contains high-quality recordings

from 40 speakers from Columbus OH conversing freely with an interviewer.

The corpus was orthographically transcribed and phonetically labeled.

Researchers can study the speakers in the corpus in terms of phonetic or

phonological phenomena, regional variations, etc.

Quality corpora can contribute to the advance of applied and theoretical

speech sciences. However, a lot of corpora created by human annotators

are bound to contain human errors. The speech corpora that will be created

by our scripts can contain errors. Just as slips of the tongue made by

language-acquiring children shed light on the developmental aspects of the

child language acquisition, errors in the corpora could be a valuable asset

in the speech science. Studies (Dickinson & Meurers 2005a, 2005b) show

that error-detecting techniques can be developed for speech corpora.

Therefore, it appears important that the academic community publishes

their work, even if it contains errors, for others to study and use it. One

advantage of using an open-source program such as Praat is that it is much

easier to develop scripts for correcting errors. This is especially so if the

labeler has made a particular kind of mistake across his or her entire

annotation. Once the nature of the mistake is revealed, it only requires a

minimum of time and effort to write a script, and correct the error. The

boundary-synchronizing script introduced above is one such example.

The file versions of all the Praat scripts and demo files can be obtained

from the author’s website. Future versions of the scripts will also be posted

on the website. Bug reports and advice on improving the scripts are always

welcomed. Current versions are not adequate in terms of generating

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 25

sufficient error messages to the user, which we hope will be improved in

future versions.

References

Boersma, P. (2005), “Praat, a system for doing phonetics by computer”, Glot

International, Vol.5, 9/10, 341-345.

British National Corpus (1991), “Written corpus design specification”, BNC

Working Paper 08.

Centre For Speech Technology (CTT) (2005), WaveSurfer (Software), KTH

in Stockholm, Sweden.

Cho, T. & Keating, P.A. (2001), “Articulatory and acoustic studies on

domain-initial strengthening in Korean”, Journal of Phonetics, Vol.25,

155-190.

Dickinson, M. & Meurers, W.D. (2005a), “Detecting annotation errors in

spoken language corpora”, Proceedings of the Special session on

treebanks for spoken language and discourse at the 15th Nordic

Conference of Computational Linguistics (NODALIDA-05). Joensuu,

Finland.

Dickinson, M. & Meurers, W.D. (2005b), “Detecting errors in discontinuous

structural annotation”, Proceedings of the 43rd Annual Meeting of

the Association for Computational Linguistics (ACL-05), 322-329, Ann

Arbor, Michigan, USA.

Free Software Foundation Inc. (1991), GNU General Public License, Version

2, June.

Jun, S. (2000), “K-ToBI (Korean ToBI) labeling conventions: Version 3”,

Speech Sciences, Vol. 7, 143-169.

26 인문논총 제56집 (2006)

Marcus, MP., Marcinkiewicz, M.A. & Santorini, B. (1993), “Building a large

annotated corpus of English: the Penn Treebank”, Computational

Linguistics, Vol.19, Issue 2, 313-330.

Pitrelli, J., Beckman, M. & Hirschberg, J. (1994), “Evaluation of prosodic

transcription labeling reliability in the ToBI framework”, Proc. ICSLP,

123-126, Yokohama, Japan.

Pitt, M., Johnson, K., & Hume, E. (2005), “The Buckeye Corpus of

Conversational Speech: Labeling conventions and a test of

transcriber reliability”, Speech Communication, Vol.45, 90-95.

Scicon R&D (2005), PitchWorks (Software), California, USA.

Syrdal, A.K., Hirschberg, J., McGory, J., & Beckman, M. (2001), “Automatic

ToBI prediction and alignment to speed manual labeling of

prosody”, Speech Communication, Vol.33, 135-151.

Yoon, K. (2006), “A prosodic phrasing model for a Korean text-to-speech

synthesis system”, Computer Speech and Language, Vol.20, Issue 1,

69-79.

Appendix (Praat scripts)

* NOTE: All the scripts below are distributed under the terms of GNU Public License. Online file

versions are available on the author’s web site. For instructions, consult section 2. Praat scripts for

Korean ToBI annotation.

1. Tokenize a paragraph by sentence

###

tokenizeParagraphBySentence.praat (Written by Kyuchul Yoon kyoon@kyungnam.ac.kr)

###

GNU General Public License

Copyright (C) Kyuchul Yoon, English Division, Kyungnam University, South Korea.

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 27

###

This program is free software; you can redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free Software

Foundation; either version 2 of the License, or (at your option) any later

version.

This program is distributed in the hope that it will be useful,but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

###

This license message was omitted in the other scripts below to save space.

###

Before you run, check that you have the following ready.

(1) A plain text file containing one (only one!) romanized paragraph with intact

sentence-final punctuation marks.

#———————————————————————————————————————-

This script will tokenize the paragraph into punctuation-separated sentences.

User can specify which punctuation marks to use.

After the tokenization, users can optionally remove sentence-final punctuation.

Thus, two output files can be produced, one with the sentence-final punctuation,

and the other without the punctuation.

###

form Specify files and folders

comment The following file should be in the same folder as this script.

comment Specify the plain text file containing one romanized paragraph.

word inFile news-002.txt

comment Output file name for tokenized sentences will have “sentenceList-” prefix.

comment The one without sentence-final punctuation will have “sentenceList2-” prefix.

comment

comment Provide punctuation marks to be used to tokenize sentences.

boolean period_(.) 1

boolean question_(?) 1

boolean exclamation_(!) 1

word additional_(not_listed_above) #

endform

Create the output file name.

outFile$ = “sentenceList-” + inFile$

28 인문논총 제56집 (2006)

Get the punctuation marks to use.

if period = 1

puncMark$ = “.”

Read the paragraph text file.

Read Strings from raw text file... ‘inFile$’

Rename... inFileObj

numParagraphs = Get number of strings

If there’s more than one paragraph, give a warning message.

if numParagraphs > 1

exit Terminating... More than one paragraph!

endif

Load the paragraph

paragraphText$ = Get string... 1

And tokenize the paragraph by the sentence period.

indexOfPeriod = index(paragraphText$,puncMark$)

lengthOfParagraph = length(paragraphText$)

iSentence = 0

while indexOfPeriod <> 0

iSentence = iSentence + 1

sentence‘iSentence’$ = left$(paragraphText$,indexOfPeriod)

paragraphText$ = right$(paragraphText$,(lengthOfParagraph-indexOfPeriod))

lengthOfParagraph = length(paragraphText$)

Remove any leading spaces iteratively.

existSpace = startsWith(paragraphText$, “ ”)

while existSpace = 1

paragraphText$ = right$(paragraphText$,(lengthOfParagraph-1))

lengthOfParagraph = length(paragraphText$)

existSpace = startsWith(paragraphText$, “ ”)

endwhile

Then continue searching for the next sentence.

indexOfPeriod = index(paragraphText$,puncMark$)

lengthOfParagraph = length(paragraphText$)

endwhile

Store the last paragraph, if any, to the array variable.

iSentence = iSentence + 1

sentence‘iSentence’$ = paragraphText$

Output the tokenized sentence array variable to a temp file for debugging purpose.

for i to iSentence

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 29

dummy$ = sentence ‘i’$

fileappend ‘outFile$’ ‘dummy$’ ‘newline$’

endfor

endif

select Strings inFileObj

Remove

if question = 1

puncMark$ = “?”

call tokenizeProc ‘puncMark$’

endif

if exclamation = 1

puncMark$ = “!”

call tokenizeProc ‘puncMark$’

endif

if length(additional$) = 1

puncMark$ = additional$

call tokenizeProc ‘puncMark$’

endif

Optional procedure for removing sentence-final punctuation.

pause Remove sentence-final punctuation too? Continue for yes, Stop for no.

Create a filename.

outFile2$ = “sentenceList2-” + inFile$

Read Strings from raw text file... ‘outFile$’

Rename... outFileObj

numLines = Get number of strings

for j to numLines

select Strings outFileObj

lineText$ = Get string... j

lengthOfLineText = length(lineText$)

if length(additional$) <> 0

if (endsWith(lineText$, “.”) or endsWith(lineText$, “?”) or endsWith(lineText$, “!”)

... or endsWith(lineText$,additional$))

lineText$ = left$(lineText$,(lengthOfLineText-1))

30 인문논총 제56집 (2006)

fileappend ‘outFile2$’ ‘lineText$’ ‘newline$’

endif

else

if (endsWith(lineText$, “.”) or endsWith(lineText$, “?”) or endsWith(lineText$, “!”))

lineText$ = left$(lineText$,(lengthOfLineText-1))

fileappend ‘outFile2$’ ‘lineText$’ ‘newline$’

endif

endif

endfor

select Strings outFileObj

Remove

procedure tokenizeProc punc$

Read the temporary output text file

Read Strings from raw text file... ‘outFile$’

Rename... outFileObj

numLines = Get number of strings

Delete the text file for it will be recreated below.

filedelete ‘outFile$’

For each pseudo-sentence, check if it has any of the demarcating symbol.

for i to numLines

select Strings outFileObj

lineText$ = Get string... i

indexOfPunc = index(lineText$,punc$)

lengthOfLineText = length(lineText$)

If it has no target symbol, just print it out.

if indexOfPunc = 0

fileappend ‘outFile$’ ‘lineText$’ ‘newline$’

If it has any target symbol, keep tokenizing and print out.

else

while indexOfPunc <> 0

sentence$ = left$(lineText$,indexOfPunc)

fileappend ‘outFile$’ ‘sentence$’ ‘newline$’

lineText$ = right$(lineText$,(lengthOfLineText-indexOfPunc))

lengthOfLineText = length(lineText$)

Remove any leading spaces if any.

existSpace = startsWith(lineText$, “ ”)

while existSpace = 1

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 31

lineText$ = right$(lineText$,(lengthOfLineText-1))

lengthOfLineText = length(lineText$)

existSpace = startsWith(lineText$, “ ”)

endwhile

Then continue searching for the next sentence.

indexOfPunc = index(lineText$,punc$)

lengthOfLineText = length(lineText$)

endwhile

Print the last token, if any, to the output text file.

fileappend ‘outFile$’ ‘lineText$’ ‘newline$’

endif

endfor

select Strings outFileObj

Remove

endproc

################################# END OF SCRIPT #################################

2. Chunk a long sound file by sentence

###

chunkLongSoundBySentence.praat (Written by Kyuchul Yoon kyoon@kyungnam.ac.kr)

###

Before you run, check that you have the following ready.

(1) A long sound (.wav) file.

(2) A text file containing a list of sentences.

(Each line should have one sentence)

#———————————————————————————————————————-

This script will prompt the user with the long sound file and an annotation

tier. The user should select, by clicking and dragging on the editor window,

the sentences one by one sequentially as specified in the text file.

When the user is done, the script will chunk sentences into smaller sound files

whose filenames are preceded by arabic numerals. The starting number can be

specified.

###

form Set parameters

comment The following files should be in the same folder as this script.

word longSoundFile_(wav) s0201a.wav

word sentenceTierName sentences

32 인문논총 제56집 (2006)

word sentenceListFile_(txt) sentenceList.txt

comment Specify the starting number of the chunked smaller sound files.

natural startingFileNum 20

comment Specify the number of digits for the arabic numeral.

natural numOfDigits_(minimum_of_2_to_maximum_of_5) 4

comment Specify the folder (to be created) for chunked sound files. (Blank if same as long

sound prefix)

word outFolder

comment Specify the prefix for the chunked smaller files. (Blank if same as long sound

prefix)

word prefixChunked

comment Thus the chunked files will be named “prefix-001.wav/TextGrid”

comment Specify the visible window length on an editor window

real windowLength_(in_seconds) 30

real startOfWindow_(in_seconds) 60

comment A log file (.log) will be created with the long sound prefix.

endform

Before creating the outFolder, check if it’s left blank.

if length(outFolder$)=0

outFolder$ = longSoundFile$ - “.wav”

endif

system_nocheck mkdir ‘outFolder$’

Check for the prefix of the chunked smaller sound/TextGrid files.

if length(prefixChunked$)=0

prefixChunked$ = longSoundFile$ - “.wav”

endif

Create the filename for the long textgrid.

prefix$ = longSoundFile$ - “.wav”

textgridName$ = prefix$ + “.TextGrid”

Create the filename for the log file.

logName$ = prefix$ + “.log”

fileappend ‘logName$’ source ‘tab$’start ‘tab$’end ‘tab$’sentence ‘newline$’

Display the contents of the text file in the info window.

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 33

Read Strings from raw text file... ‘sentenceListFile$’

Rename... sentenceListObj

numSentences = Get number of strings

clearinfo

for iSentence to numSentences

select Strings sentenceListObj

Store sentences in an array variable.

lineText ‘iSentence’$ = Get string... iSentence

dummy$ = lineText’iSentence’$

printline ‘dummy$’

endfor

Set the total number of sentences.

countSentence = iSentence

Then open the long sound file in the editor window.

Open long sound file... ‘longSoundFile$’

Rename... longSoundObj

To TextGrid... ‘sentenceTierName$’

Rename... textgridObj

Set the flag to zero. The flag will be used to see if the user has selected.

flag = 0

iSentence = 0

Set the visible window size and location.

centerOfWindow = startOfWindow+(windowLength/2)

halfOfWindow = windowLength/2

while flag = 0

select LongSound longSoundObj

plus TextGrid textgridObj

Edit

editor TextGrid textgridObj

Set the visible window size

farLeft = centerOfWindow-halfOfWindow

farRight = centerOfWindow+halfOfWindow

Zoom... farLeft farRight

Then pause for user input

34 인문논총 제56집 (2006)

pause Select a sentence to annotate. DO NOT select to write.

startOfSelection = Get start of selection

endOfSelection = Get end of selection

Update the center of visible window to display for next time.

centerOfWindow = startOfSelection+(endOfSelection-startOfSelection)/2

Check if the user has selected anything

if (endOfSelection-startOfSelection) = 0

flag = 1

pause Write chunked sound files to ‘outFolder$’/ folder?

endif

Close

endeditor

select TextGrid textgridObj

Add boundaries only if the user has selected anything, i.e. flag=0

if flag = 0

Get the sentence

iSentence = iSentence + 1

if iSentence < countSentence

sentence$ = lineText ‘iSentence’$

Then insert boundaries.

Insert boundary... 1 startOfSelection

Insert boundary... 1 endOfSelection

Now, set the interval text.

intervalNum = Get interval at time... 1 startOfSelection

Set interval text... 1 intervalNum ‘sentence$’

else

pause No more sentences in the text file! Write sound files to ‘outFolder$’/ folder?

flag = 1

endif

endif

Save the textgrid file for the long sound file.

select TextGrid textgridObj

Write to text file... ‘textgridName$’

Save the annotated chunks into smaller sound/textgrid files.

if flag = 1

select TextGrid textgridObj

numIntervals = Get number of intervals... 1

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 35

Count the files.

fileCount = 0

for iInterval to numIntervals

select TextGrid textgridObj

intervalText$ = Get label of interval... 1 iInterval

If there’s a sentence in the interval, then increase the file count.

if length(intervalText$) <> 0

fileCount = fileCount + 1

Get the start/end of the interval.

startOfInterval = Get starting point... 1 iInterval

endOfInterval = Get end point... 1 iInterval

Put the info in the log file.

fileappend ‘logName$’ ‘longSoundFile$’’ ‘ab$’ ‘startOfInterval:2’

...’tab$’ ‘endOfInterval:2’ ‘tab$’ ‘intervalText$’ ‘newline$’

And extract the segment.

Extract part... startOfInterval endOfInterval no

Rename... extractedPartTextGrid

select LongSound longSoundObj

Extract part... startOfInterval endOfInterval no

Rename... extractedPartSound

Get the correct arabic numeral for the files.

actualStartingFileNum = (startingFileNum-1)+fileCount

if actualStartingFileNum < 10

if numOfDigits = 5

zeros$ = “0000”

elsif numOfDigits = 4

zeros$ = “000”

elsif numOfDigits = 3

zeros$ = “00”

elsif numOfDigits = 2

zeros$ = “0”

endif

elsif actualStartingFileNum < 100

if numOfDigits = 5

zeros$ = “000”

elsif numOfDigits = 4

zeros$ = “00”

36 인문논총 제56집 (2006)

elsif numOfDigits = 3

zeros$ = “0”

elsif numOfDigits = 2

zeros$ = “”

endif

elsif actualStartingFileNum < 1000

if numOfDigits = 5

zeros$ = “00”

elsif numOfDigits = 4

zeros$ = “0”

elsif numOfDigits = 3

zeros$ = “”

endif

elsif actualStartingFileNum < 10000

if numOfDigits = 5

zeros$ = “0”

elsif numOfDigits = 4

zeros$ = “”

endif

elsif actualStartingFileNum < 100000

if numOfDigits = 5

zeros$ = “”

endif

endif

Now save the files with the zeros.

numeralPart$ = zeros$ + “‘actualStartingFileNum’”

prefixTemp$ = prefixChunked$ + “-”

prefixFull$ = prefixTemp$ + numeralPart$

soundNameChunked$ = prefixFull$ + “.wav”

textgridNameChunked$ = prefixFull$ + “.TextGrid”

select Sound extractedPartSound

Write to WAV file... ‘outFolder$’/ ‘soundNameChunked$’

Remove

select TextGrid extractedPartTextGrid

Write to text file... ‘outFolder$’/ ‘textgridNameChunked$’

Remove

endif

endfor

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 37

endif

endwhile

pause Check the log file in the current folder!

select TextGrid textgridObj

plus LongSound longSoundObj

plus Strings sentenceListObj

Remove

#################################### END OF SCRIPT ####################################

3. Create an annotation file, align by word and assign default labels

###

createLabelAlignByEojeolAndAssignDefaultLabels.praat

(Written by Kyuchul Yoon kyoon@kyungnam.ac.kr)

###

Before you run, check that you have the following ready.

(1) A subfolder containing chunked sound (.wav) and label (.TextGrid) files, prepared

by using “chunkLongSoundBySentence.praat”.

#———

Here’s what this script does.

(1) Make a list of all the sound/textgrid files in the specified subfolder.

(2) Prompt the user with the sound/textgrid editor window one at a time so that s/he

can align the space-delimited word in the word (or eojeol) tier (to be created).

(3) Create the phonology tier with default phrase accent (LHa) and boundary tone (HL%)

labels. “LHa” stands for an Accentual Phrase and “HL%” stands for an Intonational

Phrase boundary. Each eojeol interval will be assigned default LHa labels and the

last eojeol (before the sentence period) a HL% label.

(4) Create a break index tier with default indices: 2 for eojeol intervals and 3 for

the last eojeol.

And after the aligning is done,

(5) Assign default phonetics tier (to be created) labels for the aligned default

Accentual Phrases: for four or more syllable-eojeols, T+HL+Ha, for three-syllable

eojeols, T+LHa, for two-syllable eojeols, THa, and for one-syllable eojeol, Ta.

Depending on the identity of the first segment of each eojeol, the script will

assign a “H” for tense/aspirated obstruents, and a “L” otherwise.

NOTE: The identity of the tense/aspirated consonants will depend on which romanization

scheme was used in the romanization of the hangul text.

The script will also do the following when creating the eojeol tier.

38 인문논총 제56집 (2006)

(1) Tokenize the sentence (from the “sentences” tier) by eojeol using spaces.

(2) Each eojeol will have its own interval.

(3) All the intervals will be placed on the right hand side of the tier depending on

the “factorOfDistance”. If it’s 2, the intervals will be on the right half of the

tier, if 3, on the right two thirds, and if 5, on the right four fifths.

The factor was added for different screen resolutions and for easier boundary

placement.

###

form Set parameters

comment Specify the input subfolder containing the sound/textgrid files.

word inFolder s0201a

word inSoundExt_(with_dot) .wav

word inTextgridExt_(with_dot) .TextGrid

comment Specify the output folder suffix. Aligned files will be moved to it.

word outSuffix -aligned

comment NOTE: Finished files will be moved to the output folder.

comment Specify the syllable separator.

word sylSep_(hyphen_for_default) -

comment Specify new tier names.

word wordTier_(interval_tier) word

word phonologyTier_(point_tier) phonology

word phoneticsTier_(point_tier) phonetics

word breakIndexTier_(interval_tier) breakIndex

word miscTier miscellaneous

comment

comment Specify the factor of distance. (Usually from 2 to 5)

real factorOfDistance 3

comment

comment Specify the romanization scheme for the characters.

optionmenu Romanization: 1

option K-ToBI

option Yale

option McCune-Reischauer

option Revised Romanization (Ministry of Culture 2000)

endform

Create the output folder

outFolder$ = inFolder$ + outSuffix$

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 39

system_nocheck mkdir ‘outFolder$’

Make a list of all sound/textgrid files in the input folder and check for numbers.

Create Strings as file list... soundListObj ‘inFolder$’/* ‘inSoundExt$’

numSoundList = Get number of strings

Create Strings as file list... textgridListObj ‘inFolder$’/* ‘inTextgridExt$’

numTextgridList = Get number of strings

if numSoundList <> numTextgridList

exit WARNING! The numbers of sound/textgrid files don’t match!

endif

Start looping through each pair of files.

for iFile to numSoundList

select Strings soundListObj

soundName$ = Get string... iFile

Read from file... ‘inFolder$’/ ‘soundName$’

Rename... soundObj

prefix$ = soundName$ - inSoundExt$

textgridName$ = prefix$ + inTextgridExt$

Read from file... ‘inFolder$’/ ‘textgridName$’

Rename... textgridObj

Work with the textgrid first. Tokenize the sentence by space.

sentence$ = Get label of interval... 1 1

indexOfSpace = index(sentence$, “ ”)

lengthOfSentence = length(sentence$)

i = 0

while indexOfSpace <> 0

i = i + 1

word’i’$ = left$(sentence$,(indexOfSpace-1))

sentence$ = right$(sentence$,(lengthOfSentence-indexOfSpace))

indexOfSpace = index(sentence$, “ ”)

lengthOfSentence = length(sentence$)

endwhile

Store the last word

i = i + 1

word ‘i’$ = sentence$

40 인문논총 제56집 (2006)

Create tiers.

Insert interval tier... 2 ‘wordTier$’

Insert <sil> intervals at the 1/20th of the beginning/end of the word tier.

totalDuration = Get total duration

silenceDurationAtBegin = totalDuration/20

silenceDurationAtEnd = totalDuration-silenceDurationAtBegin

Insert boundary... 2 silenceDurationAtBegin

Insert boundary... 2 silenceDurationAtEnd

Set interval text... 2 1 <silence>

Set interval text... 2 3 <silence>

Now, insert the tokenized words with respect to the factor of distance.

First, decide on the factored start and end between which the words will be assigned.

factoredStart = silenceDurationAtBegin+(silenceDurationAtEnd-silenceDurationAtBegin)/

factorOfDistance

factoredEnd = silenceDurationAtEnd

Get the time interval for each word by dividing the factored length

by the number of tokenized words minus one, because the first word will go

to the non-factored side of the tier.

interWordInterval = (factoredEnd-factoredStart)/(i-1)

Then, enter the words.

for j to i

tokenizedWord$ = word’j’$

Set interval text... 2 (j+1) ‘tokenizedWord$’

timeToInsertBoundary = factoredStart+interWordInterval*(j-1)

if timeToInsertBoundary <> factoredEnd

Insert boundary... 2 timeToInsertBoundary

endif

endfor

Prompt the user for aligning by the word.

plus Sound soundObj

Edit

pause Align by the word and press continue when done.

Create additional tiers and assign default labels.

select TextGrid textgridObj

Insert point tier... 3 ‘phonologyTier$’

Insert point tier... 4 ‘phoneticsTier$’

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 41

Insert point tier... 5 ‘breakIndexTier$’

Insert interval tier... 6 ‘miscTier$’

numWordIntervals = Get number of intervals... 2

We need to insert (numWordIntervals-2) points to the phonology tier.

numPoints = numWordIntervals-2

for k to numPoints

timeToInsertPoint = Get end point... 2 (k+1)

if k <> numPoints

Insert point... 3 timeToInsertPoint LHa

else

If it’s the last point, then should be an IP boundary tone label.

Insert point... 3 timeToInsertPoint HL%

endif

endfor

Now for the phonetics tier labels.

for m from 2 to (numWordIntervals-1)

Set the flag for aspirated/tense consonants.

flagAspTns = 0

intervalText$ = Get label of interval... 2 m

Get the start/end of the interval

startOfInterval = Get starting point... 2 m

endOfInterval = Get end point... 2 m

lengthOfInterval = endOfInterval-startOfInterval

Check if the word starts with any of the aspirated/tense consonants.

if romanization = 1

call checkWordOnset ‘intervalText$’ 1

elsif romanization = 2

call checkWordOnset ‘intervalText$’ 2

elsif romanization = 3

call checkWordOnset ‘intervalText$’ 3

elsif romanization = 4

call checkWordOnset ‘intervalText$’ 4

endif

Now, check the number of syllables for the current interval text.

countSyllable = 0

indexOfSylSep = index(intervalText$,sylSep$)

lengthOfIntervalText = length(intervalText$)

while indexOfSylSep <> 0

42 인문논총 제56집 (2006)

countSyllable = countSyllable + 1

intervalText$ = right$(intervalText$,(lengthOfIntervalText-indexOfSylSep))

indexOfSylSep = index(intervalText$,sylSep$)

lengthOfIntervalText = length(intervalText$)

endwhile

countSyllable = countSyllable + 1

We’re ready to insert points to the phonetics tier.

Divide the cases into two: 5 or more syllables vs. up to 4 syllables.

if countSyllable > 3

for n to 4

interPointInterval = lengthOfInterval/5

timeToInsertPoint = startOfInterval+interPointInterval*n

Now enter the tone label.

if (n=1 and flagAspTns=1)

Insert point... 4 timeToInsertPoint H

elsif (n=1 and flagAspTns=0)

Insert point... 4 timeToInsertPoint L

elsif n=2

Insert point... 4 timeToInsertPoint +H

elsif n=3

Insert point... 4 timeToInsertPoint L+

elsif n=4

Insert point... 4 timeToInsertPoint Ha

endif

endfor

elsif countSyllable=3

for n to 3

interPointInterval = lengthOfInterval/4

timeToInsertPoint = startOfInterval+interPointInterval*n

Now enter the tone label.

if (n=1 and flagAspTns=1)

Insert point... 4 timeToInsertPoint H

elsif (n=1 and flagAspTns=0)

Insert point... 4 timeToInsertPoint L

elsif n=2

Insert point... 4 timeToInsertPoint +H

elsif n=3

Insert point... 4 timeToInsertPoint Ha

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 43

endif

endfor

elsif countSyllable=2

for n to 2

interPointInterval = lengthOfInterval/3

timeToInsertPoint = startOfInterval+interPointInterval*n

Now enter the tone label.

if (n=1 and flagAspTns=1)

Insert point... 4 timeToInsertPoint H

elsif (n=1 and flagAspTns=0)

Insert point... 4 timeToInsertPoint L

elsif n=2

Insert point... 4 timeToInsertPoint Ha

endif

endfor

elsif countSyllable=1

interPointInterval = lengthOfInterval/2

timeToInsertPoint = startOfInterval+interPointInterval

Now enter the tone label.

Insert point... 4 timeToInsertPoint Ha

endif

endfor

Break index tier. Need to insert (numWordIntervals-2) points to the break index tier.

for p to numPoints

timeToInsertPoint = Get end point... 2 (p+1)

if p <> numPoints

Insert point... 5 timeToInsertPoint 2

else

If it’s the last point, then should be an IP boundary break index.

Insert point... 5 timeToInsertPoint 3

endif

endfor

pause Check files and press continue to move them to output folder.

Save the aligned files to the output folder.

Write to text file... ‘outFolder$’/ ‘textgridName$’

Remove

filedelete ‘inFolder$’/ ‘textgridName$’

44 인문논총 제56집 (2006)

select Sound soundObj

Write to WAV file... ‘outFolder$’/ ‘soundName$’

Remove

filedelete ‘inFolder$’/ ‘soundName$’

endfor

select Strings soundListObj

plus Strings textgridListObj

Remove

procedure checkWordOnset word$ scheme

if scheme = 1

K-ToBI romanization scheme.

if (startsWith(word$, “p”) or startsWith(word$, “t”) or startsWith(word$, “k”) or

... startsWith(word$, “P”) or startsWith(word$, “T”) or startsWith(word$, “K”) or

... startsWith(word$, “c”) or startsWith(word$, “C”) or startsWith(word$, “s”) or

... startsWith(word$, “S”) or startsWith(word$, “h”))

flagAspTns = 1

endif

elsif scheme = 2

Yale romanization scheme.

if (startsWith(word$, “ph”) or startsWith(word$, “th”) or startsWith(word$, “kh”) or

... startsWith(word$, “pp”) or startsWith(word$, “tt”) or startsWith(word$, “kk”) or

... startsWith(word$, “ch”) or startsWith(word$, “cc”) or startsWith(word$, “s”) or

... startsWith(word$, “ss”) or startsWith(word$, “h”))

flagAspTns = 1

endif

elsif scheme = 3

McCune-Reischauer romanization scheme.

if (startsWith(word$, “p’”) or startsWith(word$, “t’”) or startsWith(word$, “k’”) or

... startsWith(word$, “pp”) or startsWith(word$, “tt”) or startsWith(word$, “kk”) or

... startsWith(word$, “ch’”) or startsWith(word$, “tch”) or startsWith(word$, “s”) or

... startsWith(word$, “ss”) or startsWith(word$, “h”))

flagAspTns = 1

endif

elsif scheme = 4

Revised Romanization scheme.

if (startsWith(word$, “p”) or startsWith(word$, “t”) or startsWith(word$, “k”) or

... startsWith(word$, “pp”) or startsWith(word$, “tt”) or startsWith(word$, “kk”) or

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 45

... startsWith(word$, “ch”) or startsWith(word$, “jj”) or startsWith(word$, “s”) or

... startsWith(word$, “ss”) or startsWith(word$, “h”))

flagAspTns = 1

endif

endif

endproc

################################# END OF SCRIPT #################################

4. Do the annotation

###

doLabeling.praat (Written by Kyuchul Yoon kyoon@kyungnam.ac.kr)

###

Before you run, check that you have the following ready.

(1) A subfolder containing sound/textgrid files aligned by using

createLabelAlignByEojeolAndAssignDefaultLabels.praat

#——

Here’s what this script does.

(1) Opens a pair of aligned sound/textgrid files for K-ToBI labeling.

(2) User does the labeling with the help of doLabeling.man Praat manpage.

(3) When done, saves and moves the pair of files to the output folder.

###

IMPORTANT!! Instructions on moving boundaries around IMPORTANT!!

###

Please be sure to press the [SHIFT] key when dragging boundaries. This will

ensure that other synchronized boundaries move simultaneously. Otherwise, you

will destroy synchronization across other tiers.

###

form Set parameters

comment Specify input folder containing sound/textgrid files.

word inFolder s0201a-aligned

choice sound: 1

button .wav

choice textgrid: 1

button .TextGrid

comment Output folder will be created and will have “-labeled” suffix.

comment Specify the main Praat manpage to open (Should be in the same folder as this

script).

46 인문논총 제56집 (2006)

word manFile 04-doLabeling.man

comment Specify the script folder for the Praat manpage (Should be a subfolder)

word manFolder manScripts

endform

Create the output folder.

outFolder$ = inFolder$ + “-labeled”

system_nocheck mkdir ‘outFolder$’

Make a list of file names in the input folder.

Create Strings as file list... soundListObj ‘inFolder$’/*.wav

numSounds = Get number of strings

Run the Praat manpage.

Read from file... ‘manFile$’

Loop through each pair.

for iFile to numSounds

select Strings soundListObj

soundName$ = Get string... iFile

prefix$ = soundName$ - “.wav”

textgridName$ = prefix$ + “.TextGrid”

Read from file... ‘inFolder$’/ ‘textgridName$’

Rename... textgridObj

Read from file... ‘inFolder$’/ ‘soundName$’

Rename... soundObj

plus TextGrid textgridObj

Edit

editor TextGrid textgridObj

select TextGrid textgridObj

pause Use the Praat manpage to do the labeling and press Continue when done.

endeditor

Save the finished files to the output folder.

select Sound soundObj

Write to WAV file... ‘outFolder$’/ ‘soundName$’

Remove

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 47

filedelete ‘inFolder$’/ ‘soundName$’

select TextGrid textgridObj

Write to text file... ‘outFolder$’/ ‘textgridName$’

Remove

filedelete ‘inFolder$’/ ‘textgridName$’

endfor

select Strings soundListObj

Remove

################################# END OF SCRIPT #################################

—————————————————————————-

ManPagesTextFile

“K-ToBI Labels” “Kyuchul Yoon” 20060423 0

<entry> “K-ToBI annotation labels and menu buttons.”

<intro> “Select a point (in a point tier) or a range (by dragging on the spectrogram) and choose

the following.”

<intro> “To move boundaries around, please be sure to press [SHIFT] while dragging!”

<intro> “Be sure to use UNDO menu item under EDIT menu on the editor window when you

make a mistake.”

<entry> “%Point %tier %(i.e. %phonological %tone, %phonetic %tone, %break %index %tier)

%menu”

<entry> “For phonological tone tier (#Tier #3)”

<list_item> “@@\SCmanScripts/man-phonology-delete.praat|delete@”

<list_item> “”

<list_item> “@@\SCmanScripts/man-phonology-LHa.praat|LHa@@@\SCmanScripts/man-

phonology-HL%.praat|HL\% @@@\SCmanScripts/man-phonology-L%.praat|L\% @@@\

SCmanScripts/man-phonology-H%.praat|H\% @@@\SCmanScripts/man-phonology-

LH%.praat|LH\% @@@\SCmanScripts/man-phonology-LHL%.praat|LHL\% @@@\SCmanScripts/

man-phonology-HLHL%.praat|HLHL\% @@@\SCmanScripts/man-phonology-HLH%.

praat|HLH\% @@@\SCmanScripts/man-phonology-LHLH%.praat|LHLH\% @@@\SCmanScripts/

man-phonology-LHLHL%.praat|LHLHL\% @”

<entry> “For phonetic tone tier (#Tier #4)”

<list_item> “@@\SCmanScripts/man-phonetics-delete.praat|delete@”

<list_item> “”

<list_item> “@@\SCmanScripts/man-phonetics-L.praat|L@@@\SCmanScripts/man-phonetics-

H.praat|H@@@\SCmanScripts/man-phonetics-+H.praat|\+ H@@@\SCmanScripts/man-phonetics-

L+.praat|L\+ @@@\SCmanScripts/man-phonetics-Ha.praat|Ha@@@\SCmanScripts/man-

48 인문논총 제56집 (2006)

phonetics-La.praat|La@”

<list_item> “”

<list_item> “@@\SCmanScripts/man-phonetics-X.praat|X@@@\SCmanScripts/man-phonetics-

a.praat|a@@@\SCmanScripts/man-phonetics-%.praat|\% @”

<normal> “To add additional symbols”

<list_item> “@@\SCmanScripts/man-phonetics-ques.praat|\? @@@\SCmanScripts/man-phonetics-

quesa.praat|\? a@@@\SCmanScripts/man-phonetics-ques%.praat|\? \% @”

<entry> “For break index tier (#Tier #5)”

<list_item> “@@\SCmanScripts/man-breakIndex-delete.praat|delete@”

<list_item> “”

<list_item> “@@\SCmanScripts/man-breakIndex-0.praat|0@@@\SCmanScripts/man-breakIndex-

1.praat|1@@@\SCmanScripts/man-breakIndex-2.praat|2@@@\SCmanScripts/man-breakIndex-

3.praat|3@@@\SCmanScripts/man-breakIndex-1m.praat|1m@@@\SCmanScripts/man-breakIndex-

2m.praat|2m@@@\SCmanScripts/man-breakIndex-3m.praat|3m@@@\SCmanScripts/man-

breakIndex-x.praat|x@ “

<entry> “%Interval %tier %(i.e. %miscellaneous %tier) %menu”

<entry> “For miscellaneous tier (#Tier #6)”

<list_item> “@@\SCmanScripts/man-misc-laughter.praat|\< laughter\> @”

<entry> “Manual Labeling Instructions.”

<intro> “To delete a point : Select and press [ALT]-[Backspace] at the same time.”

<intro> “To move around: Press [ALT]-[arrow keys].”

<intro> “To move boundaries around, please be sure to press [SHIFT] while dragging!”

<intro> “Be sure to use UNDO menu item under EDIT menu on the editor window when you

make a mistake.”

—————————————————————————-

###

man-phonology-delete.praat (Written by Kyuchul Yoon kyoon@kyungnam.ac.kr)

###

Here’s what this script does:

Within a Praat manpage, it will rename a point label in the phonology tier.

This is just one of many scripts embedded in the manpage. Others were omitted

to save space.

###

cursor = Get cursor

endeditor

select TextGrid textgridObj

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 49

numPoints = Get number of points... 3

for i to numPoints

timeOfPoint = Get time of point... 3 i

if timeOfPoint = cursor

Set point text... 3 i LHa

endif

endfor

Return to the original environment

editor

################################# END OF SCRIPT #################################

5. Evaluate inter-labeler agreement

###

rateInterLabelerAgreement.praat (Written by Kyuchul Yoon kyoon@kyungnam.ac.kr)

###

Before you run, check that you have the following ready.

(1) A subfolder containing a list of subfolders, each of which contains

the same set of TextGrid files used for inter-labeler agreement.

e.g.) ..interLabelerAgreement/labeler01/

labeler02/

labeler03/

etc.

If there’s a missing file in any of the subfolder, error message pops up.

#——

Here’s what this script does.

(1) Opens the same TextGrid file one at a time from each of the labeler folders.

e.g.) Opens “label_01.TextGrid” from all of the labeler folders.

(2) Checks each phonological tone tier label (e.g. NONE, LHa, X%) corresponding

to the right boundary of each of the word tier interval.

(3) Outputs labelers’ labels to plain text files, one for each set of TextGrid.

(4) Calculates various inter-labeler agreement rates for the phonological tone

tier. Does not calculate the surface (or phonetic) tone tier agreement.

The inter-labeler agreement numbers will be in each of the output text files.

NOTE: Calculation follows Pitrelli et al. “Evaluation of prosodic transcription

labeling reliability in the ToBI framework”, ICSLP 1994, pp.123-126.

###

form Set parameters

50 인문논총 제56집 (2006)

comment The following folder should have subfolders that correspond to the labelers.

word inFolder interLabelerAgreement

word inExt_(with_dot) .TextGrid

natural tierOfWord 2

natural tierOfPhonology 3

comment A text report file (.agree) will be created for each TextGrid.

endform

Make a list of subfolders. Each folder belongs to each labeler.

Create Strings as directory list... folderListObj ‘inFolder$’

rawNumFolders = Get number of strings

Since the raw number of folders contains self and parent, subtract it by 2.

numFolders = rawNumFolders-2

Now, make a list of files for the first labeler folder.

firstFolderName$ = Get string... 3

Create Strings as file list... fileListObj ‘inFolder$’/ ‘firstFolderName$’/* ‘inExt$’

Sort

numFiles = Get number of strings

pause ‘numFolders’ labelers & ‘numFiles’ files for each labeler. Continue?

Get one folder name to initiate the loop

select Strings folderListObj

folderName$ = Get string... 3

Initialize the numerical variables.

totalActualTPW = 0

totalReferenceTPW = 0

Loop through each file in each folder

for iFile to numFiles

select Strings fileListObj

fileName$ = Get string... iFile

Read from file... ‘inFolder$’/ ‘folderName$’/ ‘fileName$’

Rename... textgridObj

numIntervals = Get number of intervals... tierOfWord

Noting the two silence intervals, get the number of eojeols.

numOfEojeols = numIntervals - 2

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 51

Remove

Get the output file name.

outFile$ = fileName$ + “.agree”

String variables for the output file later on.

wordTierString$ = “WORD” + tab$

stringOfTPW$ = “ActualTPW” + tab$

stringOfRefTPW$ = “ReferenceTPW” + tab$

Initialize the string variables for the output file later on.

for jFolder to numFolders

stringOfLabeler’jFolder’$ = “labeler “ + “‘jFolder’”

stringOfLabeler’jFolder’$ = stringOfLabeler ‘jFolder’$ + tab$

endfor

Initialize the numerical variables.

actualTPW = 0

referenceTPW = 0

Loop through each interval to get the label in the phonology tier.

for iInterval from 2 to (numIntervals-1)

Get the interval text.

select Strings folderListObj

directoryName$ = Get string... 3

Read from file... ‘inFolder$’/ ‘directoryName$’/ ‘fileName$’

Rename... textgridObj

Get the eojeol from the word tier and add it to the existing variable.

textOfInterval$ = Get label of interval... tierOfWord iInterval

wordTierString$ = wordTierString$ + textOfInterval$

wordTierString$ = wordTierString$ + tab$

Remove

Initialize the number of AP’s or IP’s.

numOfIP = 0

numOfAP = 0

numOfNONE = 0

52 인문논총 제56집 (2006)

Loop through each folder to get the TextGrid file.

for jFolder from 3 to rawNumFolders

select Strings folderListObj

directoryName$ = Get string... jFolder

Read from file... ‘inFolder$’/ ‘directoryName$’/ ‘fileName$’

Rename... textgridObj

Get the end point of each interval.

endPointOfInterval = Get end point... tierOfWord iInterval

numPoints = Get number of points... tierOfPhonology

Look for the point label that corresponds to the end point of the interval.

iPoint = 1

flag = 0

while (iPoint <= numPoints and flag = 0)

timeOfPoint = Get time of point... tierOfPhonology iPoint

If there is a point label at the end point, then get the label.

if timeOfPoint = endPointOfInterval

flag = 1

valueOfLabel$ = Get label of point... tierOfPhonology iPoint

endif

iPoint = iPoint + 1

endwhile

If the flag is zero after the while loop, then there’s no point label.

if flag = 0

valueOfLabel$ = “NONE”

endif

Check the phonological tone tier point label for calculation.

rightMostLetter$ = right$(valueOfLabel$,1)

if rightMostLetter$ = “a”

numOfAP = numOfAP + 1

elsif rightMostLetter$ = “%”

numOfIP = numOfIP + 1

elsif rightMostLetter$ = “E”

numOfNONE = numOfNONE + 1

endif

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 53

Remove the object and store the label into an array variable

for the text file output later on.

Remove

iLabeler = jFolder - 2

stringOfLabeler ‘iLabeler’$ = stringOfLabeler ‘iLabeler’$ + valueOfLabel$

stringOfLabeler ‘iLabeler’$ = stringOfLabeler ‘iLabeler’$ + tab$

endfor

Get the number of each label. If equal to or greater than 2, add to numOfTPW.

totalNumOfTPW = 0

if numOfNONE >= 2

numOfTPW = numOfNONE*(numOfNONE-1)/2

totalNumOfTPW = totalNumOfTPW + numOfTPW

endif

if numOfAP >= 2

numOfTPW = numOfAP*(numOfAP-1)/2

totalNumOfTPW = totalNumOfTPW + numOfTPW

endif

if numOfIP >= 2

numOfTPW = numOfIP*(numOfIP-1)/2

totalNumOfTPW = totalNumOfTPW + numOfTPW

endif

Get the total number of transcriber-pair word (TPW) and add it to the existing

variable.

numOfRefTPW = numFolders * (numFolders-1) / 2

stringOfTPW$ = stringOfTPW$ + “‘totalNumOfTPW’”

stringOfTPW$ = stringOfTPW$ + tab$

stringOfRefTPW$ = stringOfRefTPW$ + “‘numOfRefTPW’”

stringOfRefTPW$ = stringOfRefTPW$ + tab$

Get the total (accumulated) TPW.

actualTPW = actualTPW + numOfTPW

referenceTPW = referenceTPW + numOfRefTPW

endfor

totalActualTPW = totalActualTPW + actualTPW

totalReferenceTPW = totalReferenceTPW + referenceTPW

54 인문논총 제56집 (2006)

agreementRate = totalActualTPW / totalReferenceTPW * 100

Print the string output to a file.

fileappend ‘outFile$’ ‘wordTierString$’ ‘newline$’

for jFile to numFolders

dummy$ = stringOfLabeler ‘jFile’$

fileappend ‘outFile$’ ‘dummy$’ ‘newline$’

endfor

fileappend ‘outFile$’ ‘stringOfTPW$’ ‘tab$’ ‘actualTPW’ ‘newline$’

fileappend ‘outFile$’ ‘stringOfRefTPW$’ ‘tab$’ ‘referenceTPW’ ‘newline$’

fileappend ‘outFile$’ ‘newline$’

fileappend ‘outFile$’ ‘totalActualTPW’ out of ‘totalReferenceTPW’ ‘tab$’

... ‘agreementRate:1’% ‘newline$’

endfor

select Strings fileListObj

plus Strings folderListObj

Remove

################################# END OF SCRIPT #################################

6. Synchronize boundaries

###

synchronizeBoundary.praat (Written by Kyuchul Yoon kyoon@kyungnam.ac.kr)

###

Before you run, check that you have the following ready.

(1) A subfolder containing sound (.wav) and label (.TextGrid) files.

#——

Here’s what this script does.

(1) With respect to the reference tier, checks the target tier and displays a

list of “bad” boundaries that need synchronization along with their

difference in seconds. A reference constant (in seconds) would be required

to define the “bad” boundaries.

(2) Based on the maximum difference, the script will actually adjusts the “bad”

boundaries and prompt the user to check the newly created target tier.

(3) Removes the old target tier permanently and saves the new label file.

###

form Set parameters

comment SPECIFIY THE INPUT AND OUTPUT FILES AND FOLDERS.

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 55

comment INPUT

word inSound s0201a-aligned-labeled

word inTextgrid s0201a-aligned-labeled-nonsync

comment OUPUT

word outSound_(blank_for_not_moving)

word outTextgrid_(to_be_created) s0201a-aligned-labeled-sync

comment ___

comment SPECIFY THE REFERENCE TIER AND THE TARGET TIER.

comment The modified target tier will be created just below the target tier for your

examination.

comment After the examination, the old target tier will permanently be removed from the

label file.

natural referenceTier_(will_remain_the_same) 2

optionmenu referenceTierType: 1

option interval tier

option point tier

natural targetTier_(will_be_modified) 3

optionmenu targetTierType: 2

option interval tier

option point tier

comment ___

comment SPECIFY THE REFERENCE CONSTANT.

comment Inter-tier boundary difference less than this value will be reported before actual

modification.

real referenceConstant 0.1

endform

Check the outSound$ variable. If it’s blank, the sound files stay put.

Otherwise, create the output sound folder besides the output label folder.

outSoundLength = length(outSound$)

if outSoundLength <> 0

system_nocheck mkdir ‘outSound$’

endif

Create the output label folder.

system_nocheck mkdir ‘outTextgrid$’

Check the tier types and divide the work.

if (referenceTierType = 1 and targetTierType = 2)

56 인문논총 제56집 (2006)

This’d be the most common case, i.e. adjust the point tier wrt/

the interval tier. E.g.) Adjusting the phonology/breakIndex tier wrt/

the word tier.

Read the files

Create Strings as file list... soundListObj ‘inSound$’/*.wav

Sort

numFiles = Get number of strings

for iFile to numFiles

select Strings soundListObj

soundName$ = Get string... iFile

prefix$ = soundName$ - “.wav”

labelName$ = prefix$ + “.TextGrid”

Read from file... ‘inSound$’/ ‘soundName$’

Rename... soundObj

Read from file... ‘inTextgrid$’/ ‘labelName$’

Rename... labelObj

Loop through each point boundary on the target tier and compare

inter-tier boundary difference wrt/ the reference interval tier and

display them on the info window.

select TextGrid labelObj

numTargetPoints = Get number of points... targetTier

numReferenceIntervals = Get number of intervals... referenceTier

oldInterTierBoundaryDiff = 0

maxValue = oldInterTierBoundaryDiff

Prepare the info window

clearinfo

printline indexOfPoint’tab$’interTierDiff

for iPoint to numTargetPoints

timeOfPoint = Get time of point... targetTier iPoint

labelOfPoint$ = Get label of point... targetTier iPoint

Idenfity the closest boundary in the reference interval tier.

flagFound = 0

iInterval = 0

while (flagFound = 0 and iInterval < numReferenceIntervals)

iInterval=iInterval+1

timeOfRtBoundary = Get end point... referenceTier iInterval

interTierBoundaryDiff = abs(timeOfPoint-timeOfRtBoundary)

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 57

If the two inter-tier boundary difference is less than

the reference constant, then put it in the info window

and get the maximum value.

if interTierBoundaryDiff < referenceConstant

flagFound = 1

printline ‘iPoint’ ‘tab$’’interTierBoundaryDiff’

Compare and set the new max value.

if interTierBoundaryDiff > maxValue

maxValue = interTierBoundaryDiff

pointOfMaxValue = timeOfPoint

iPointOfMaxValue = iPoint

endif

Now store everything to array variables.

newTimeOfPoint ‘iPoint’ = timeOfRtBoundary

newLabelOfPoint ‘iPoint’$ = labelOfPoint$

endif

endwhile

endfor

Now move the cursor near to the boundary where maxValue was calculated.

This is necessary so that the user can check if the reference constant

is appropriate. If not, run the script again with a different constant.

select Sound soundObj

plus TextGrid labelObj

Edit

editor TextGrid labelObj

left = pointOfMaxValue-1

right = pointOfMaxValue+1

Select... left right

Zoom to selection

Move cursor to... ‘pointOfMaxValue’

endeditor

Comment the following ‘pause’ line for batch processing.

However, doing so might introduce errors.

pause Max inter-tier boundary difference was ‘maxValue:3’ at

...’iPointOfMaxValue’th point. Perform adjustment?

Create a new point tier.

58 인문논총 제56집 (2006)

select TextGrid labelObj

oldTierName$ = Get tier name... targetTier

newTierName$ = “new.” + oldTierName$

Insert point tier... targetTier ‘newTierName$’

for iPoint to numTargetPoints

newTime = newTimeOfPoint’iPoint’

newLabel$ = newLabelOfPoint’iPoint’$

Insert point... targetTier newTime ‘newLabel$’

endfor

Comment the following ‘pause’ line for batch processing.

However, doing so might introduce errors.

pause Check new/old target tier and Continue to remove the old tier and to save.

oldTierNum = targetTier+1

Remove tier... oldTierNum

Set tier name... targetTier ‘oldTierName$’

if outSoundLength > 0

Write to text file... ‘outTextgrid$’/ ‘abelName$’

select Sound soundObj

Write to WAV file... ‘outSound$’/ ‘soundName$’

else

Write to text file... ‘outTextgrid$’/ ‘labelName$’

endif

select Sound soundObj

plus TextGrid labelObj

Remove

endfor

select Strings soundListObj

Remove

elsif (referenceTierType = 2 and targetTierType = 2)

This is also a possible scenario, e.g. adjusting the breakIndex tier wrt/

the phonology tier. This 2-2 case could be dealt with the 1-2 case above.

exit Warning! Why don’t you try referenceTierType(interval tier) and

...targetTierType(point tier)?

elsif (referenceTierType = 1 and targetTierType = 1)

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 59

This would be adjusting the misc tier wrt/ the word tier.

Would this be really necessary?

Could be coded later if need arises.

exit Not coded yet!

elsif (referenceTierType = 2 and targetTierType = 1)

This’d be a pointless thing to do.

So, warn the user.

exit Not coded yet!

endif

################################# END OF SCRIPT #################################

7. Normalize intensity of sound files

###

normalizeIntensityOfSound.praat (Written by Kyuchul Yoon kyoon@kyungnam.ac.kr)

###

Before you run, check that you have the following ready.

(1) A subfolder containing a list of sound files to be normalized

#——

Here’s what this script does.

(1) Scans the sound files to identify the maximum/minimum intensity in dB.

(2) If not specified by the user, normalizes the sound files with respect to

the maximum value.

(3) Outputs the normalized sound files in a different folder, preserving the

original sound files.

NOTE: Uses the “Scale intensity...” menu item under “Modify -” button as of

version 4.4.13.

###

form Set parameters

word inFolder orig-s0201a

word inExt_(with_dot) .wav

comment If blank, the prefix “normalized-” will be added to the input folder name.

word outFolder_(to_be_created)

comment If zero, the sound files will be scanned and normalized with respect to the

maximum dB value.

real valueOfdB 0

comment If blank, the text log file will have the suffix “.log” after the input folder name.

60 인문논총 제56집 (2006)

word logFile_(to_be_created)

endform

Get the file/folder names.

if length(outFolder$) = 0

outFolder$ = “normalized-” + inFolder$

endif

system_nocheck mkdir ‘outFolder$’

if length(logFile$) = 0

logFile$ = inFolder$ + “.log”

endif

Check the number of sound files in the input folder.

Create Strings as file list... fileListObj ‘inFolder$’/* ‘inExt$’

numFiles = Get number of strings

pause ‘numFiles’ sound files identified. Continue?

Check if the user specified the dB value to be used in the normalization process.

if valueOfdB = 0

Then scan the files to identify the maximum dB.

pause No dB value specified. The maximum dB value will be used for normalization.

maxdB = 0

for jFile to numFiles

select Strings fileListObj

fileName$ = Get string... jFile

Read from file... ‘inFolder$’/ ‘fileName$’

Rename... soundObj

dBvalue = Get intensity (dB)

Remove

Establish the maximum value.

if dBvalue > maxdB

maxdB = dBvalue

endif

endfor

Now that we identified the maximum value, call the procedure.

call procNormalize maxdB

else

Normalize the sound files with the user-specified dB.

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 61

pause All the sound files will be normalized to ‘valueOfdB’ dB.

call procNormalize valueOfdB

endif

procedure procNormalize value

for iFile to numFiles

select Strings fileListObj

fileName$ = Get string... iFile

Read from file... ‘inFolder$’/ ‘fileName$’

Rename... soundObj

beforeDB = Get intensity (dB)

Scale intensity... value

afterDB = Get intensity (dB)

Write to WAV file... ‘outFolder$’/ ‘fileName$’

Remove

fileappend ‘logFile$’ ‘fileName$’ ‘tab$’before: ‘beforeDB:2’ ‘tab$’after: ‘afterDB:2’

‘newline$’

endfor

select Strings fileListObj

Remove

endproc

################# END OF SCRIPT #################

About the author:

윤규철(Kyuchul Yoon), 경남대학교 영어학부(Division of English,

Kyungnam University)

449 Wolyong-dong, Masan, Kyungnam, 631-701, S. Korea

+82-55-249-2124

kyoon@kyungnam.ac.kr

62 인문논총 제56집 (2006)

이 논문의 목적은 한국어 토비 운율표기체제를 이용한 대용량의 음성말뭉

치 개발 시에 인적 시간적 자원을 줄이기 위한 프랏 스크립트 툴을 소개하는

것이다. 여기에 소개된 프랏 스크립트는 연구자로 하여금 단순반복적인 단계

를 생략할 수 있도록 도와주어 시간을 절약하도록 한다. 이 스크립트 세트를

이용하면 로마자화된 텍스트와 음성녹음을 토비체제로 표기된 음성말뭉치로

변환시킬 수 있다. 즉 텍스트와 음성녹음을 문장단위로 나누고, 또 표기자들

사이의 일치도를 평가하는 것에 이르기까지 일관된 작업을 반자동으로 수행

할 수 있다. 소개된 스크립트는 원본공개프로그램의 규율을 따르며 필요에 따

라 자유롭게 변환하여 이용할 수 있다.

* 열쇠글: 프랏, 스크립트, 한국어, 토비, K-토비, 운율표기

Kyuchul Yoon / Unified Praat Script Tools for Facilitating Korean ToBI Annotation 63

<국문초록>

한국어 토비 표기를 위한 프랏 스크립트 툴

윤규철

(경남대 영어학부)4)

4) This work was supported by Kyungnam University Foundation Grant, 2006.

